삼각형 닮음 | 중2 수학 | 홈런 중등
아이스크림 홈런과 함께 중2 수학 삼각형 닮음에 대해 공부하도록 하겠습니다.- 작성시간
- 2023-11-08
안녕하세요. 공부를 좋아하는 습관을 만들어 주는 아이스크림 홈런입니다.
그럼, 지금부터 아이스크림 홈런과 함께 중 2수학 삼각형 닮음에 대해 학습 내용을 알려드리겠습니다.
1. ‘삼각형의 닮음조건’ 개념
(1) 삼각형의 닮음조건
두 삼각형 ABC와 A′B′C′은 다음의 어느 한 조건을 만족하면 서로 닮음입니다.
가) SSS 닮음
세 쌍의 대응하는 변의 길이의 비가 같습니다.
➡ a : a′ = b : b′ = c : c′
나) SAS 닮음
두 쌍의 대응하는 변의 길이의 비가 같고,
그 끼인 각의 크기가 같다.
➡ a : a′ = c : c′, ∠B = ∠B′
다) AA 닮음
두 쌍의 대응하는 각의 크기가 같다.
(모든 대응각의 크기가 같아짐)
➡ ∠B = ∠B′, ∠C = ∠C′
지금까지 중2 수학 삼각형 닮음에 대해 공부를 해보았습니다.
세 쌍의 대응하는 변의 길이의 비가 같을 때, 두 쌍의 대응하는 변의 길이의 비가 같고 그 끼인 각의 크기가 같을 때, 두 쌍의 대응하는 각의 크기가 같을 때 삼각형의 조건을 찾아보았는데요.
이를 활용하여 닮은 삼각형을 찾아보며 공부해보아요!
중등 공부도 역시 아이스크림 홈런!
무료체험 신청하기>
유료체험 신청하기>
그럼, 지금부터 아이스크림 홈런과 함께 중 2수학 삼각형 닮음에 대해 학습 내용을 알려드리겠습니다.
1. ‘삼각형의 닮음조건’ 개념
(1) 삼각형의 닮음조건
두 삼각형 ABC와 A′B′C′은 다음의 어느 한 조건을 만족하면 서로 닮음입니다.
가) SSS 닮음
세 쌍의 대응하는 변의 길이의 비가 같습니다.
➡ a : a′ = b : b′ = c : c′
나) SAS 닮음
두 쌍의 대응하는 변의 길이의 비가 같고,
그 끼인 각의 크기가 같다.
➡ a : a′ = c : c′, ∠B = ∠B′
다) AA 닮음
두 쌍의 대응하는 각의 크기가 같다.
(모든 대응각의 크기가 같아짐)
➡ ∠B = ∠B′, ∠C = ∠C′
지금까지 중2 수학 삼각형 닮음에 대해 공부를 해보았습니다.
세 쌍의 대응하는 변의 길이의 비가 같을 때, 두 쌍의 대응하는 변의 길이의 비가 같고 그 끼인 각의 크기가 같을 때, 두 쌍의 대응하는 각의 크기가 같을 때 삼각형의 조건을 찾아보았는데요.
이를 활용하여 닮은 삼각형을 찾아보며 공부해보아요!
중등 공부도 역시 아이스크림 홈런!
무료체험 신청하기>
유료체험 신청하기>